[Algorithm] DP Problems Series #2: Leetcode #70. Climbing Stairs
재귀함수, top-down dp, bottom-up dp, cache 4가지 방법으로 구현하기 #2
[Algorithm] DP Problems Series #2: Leetcode #70. Climbing Stairs
DP Problems Series에서는 DP 문제를 접했을 때 풀이할 수 있는 4가지 방법(재귀함수, top-down dp, bottom-up dp, cache)으로 정리하고 풀어본다.
Intro
Leetcode의 Min Cost Climbing Stairs 문제를 4가지 방식(재귀, Top-Down DP, Bottom-Up DP, Cache)으로 풀어보자.
Solution 1) Recursive
Time Complexity: O(2n)
1
2
3
4
5
def climbStairs_recursive(n: int) -> int:
if n <= 2:
return n
return climbStairs_recursive(n - 1) + climbStairs_recursive(n - 2)
Solution 2) DP: Top-Down (memoization)
Time Complexity: O(n)
1
2
3
4
5
6
7
8
def climbStairs_top_down(n: int, dp: dict[int, int] | None = None) -> int:
if dp is None:
dp = {1: 1, 2: 2}
if n not in dp:
dp[n] = climbStairs_top_down(n - 1, dp) + climbStairs_top_down(n - 2, dp)
return dp[n]
Solution 3) DP: Bottom-Up (for loop)
Time Complexity: O(n)
List
활용
1
2
3
4
5
6
7
8
9
10
11
def climbStairs_bottom_up_list(n: int) -> int:
if n <= 2:
return n
dp = [0] * (n + 1)
dp[1], dp[2] = 1, 2
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
Dictionary
활용
1
2
3
4
5
6
7
8
9
10
def climbStairs_bottom_up_dict(n: int) -> int:
dp = {1: 1, 2: 2}
if n <= 2:
return dp[n]
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
Solution 4) functools.cache
Time Complexity: O(n)
1
2
3
4
5
6
7
8
9
from functools import cache
@cache
def climbStairs_cache(n: int) -> int:
if n <= 2:
return n
return climbStairs_cache(n - 1) + climbStairs_cache(n - 2)
This post is licensed under CC BY 4.0 by the author.