Post

[Algorithm] DP Problems Series #2: Leetcode #70. Climbing Stairs

재귀함수, top-down dp, bottom-up dp, cache 4가지 방법으로 구현하기 #2

[Algorithm] DP Problems Series #2: Leetcode #70. Climbing Stairs

DP Problems Series에서는 DP 문제를 접했을 때 풀이할 수 있는 4가지 방법(재귀함수, top-down dp, bottom-up dp, cache)으로 정리하고 풀어본다.


Intro

✏️ LeetCode #70. Climbing Stairs

Leetcode의 Min Cost Climbing Stairs 문제를 4가지 방식(재귀, Top-Down DP, Bottom-Up DP, Cache)으로 풀어보자.


Solution 1) Recursive

Time Complexity: O(2n)

1
2
3
4
5
def climbStairs_recursive(n: int) -> int:
    if n <= 2:
        return n

    return climbStairs_recursive(n - 1) + climbStairs_recursive(n - 2)


Solution 2) DP: Top-Down (memoization)

Time Complexity: O(n)

1
2
3
4
5
6
7
8
def climbStairs_top_down(n: int, dp: dict[int, int] | None = None) -> int:
    if dp is None:
      dp = {1: 1, 2: 2}

    if n not in dp:
        dp[n] = climbStairs_top_down(n - 1, dp) + climbStairs_top_down(n - 2, dp)

    return dp[n]


Solution 3) DP: Bottom-Up (for loop)

Time Complexity: O(n)

List 활용

1
2
3
4
5
6
7
8
9
10
11
def climbStairs_bottom_up_list(n: int) -> int:
    if n <= 2:
        return n

    dp = [0] * (n + 1)
    dp[1], dp[2] = 1, 2

    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]

    return dp[n]

Dictionary 활용

1
2
3
4
5
6
7
8
9
10
def climbStairs_bottom_up_dict(n: int) -> int:
    dp = {1: 1, 2: 2}

    if n <= 2:
        return dp[n]

    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]

    return dp[n]


Solution 4) functools.cache

Time Complexity: O(n)

1
2
3
4
5
6
7
8
9
from functools import cache


@cache
def climbStairs_cache(n: int) -> int:
    if n <= 2:
        return n

    return climbStairs_cache(n - 1) + climbStairs_cache(n - 2)
This post is licensed under CC BY 4.0 by the author.